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Overview
 Multi-state models

 Generalities.
 Progressive three-state models: empirical estimators.
 Regression models.

 R based Software: p3state.msm
 Application

Colon cancer data; Bladder cancer data.



Multi-state models

A multi-state model is a model for a stochastic process,
which at any time point occupies one of a set of discrete
states.

In biomedical applications, the states may be based:

 Clinical symptoms

 Biological markers

 Some scale of the disease

 A non-fatal complication in the course of the illness.



The mortality model

Multi-state models (MSMs) are very useful for

describing complicated event history data. These

models may be considered a generalization of survival

analysis where survival is the ultimate outcome of

interest but where intermediate (transient) states are

identified.

The mortality model (for survival analysis)

1. Alive 2. Dead



Progressive three-state model

The scope of multi-state models (Andersen et al., 1993) provides
a rich framework to handle complex situations involving more
than two states and a number of possible transitions among
them.

Alive and 
disease-free recurrence Dead

The progressive three-state model for breast cancer data.

1. Healthy 2. Diseased

3. Dead

Three transition intensities:
- Incidence of the illness;
- Two death intensities (with and 
without the disease)



Notations

The multi-state process is fully characterized through:

Transition  probabilities between  states  h and  j , 

being      the observed history of the process up to time t that 

is generated by                        . Or through  transition  

intensities:
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Assumptions and goals

Assumptions
 Time-Homogeneity: the intensities are constant over time.
 The Markov assumption: future evolution only depends on the

current state. That is, the transition intensities are independent
of the history of the process.

 The semi-Markov assumption: future evolution does not depend
on the current time, but only on the duration in the current state.

Goals
 Estimation of transition probabilities; Estimation of the

bivariate distribution function.

 Multi-state regression (e.g., using Cox (semi-)Markov models)



survival http://cran.r-project.org/web/packages/survival

msm http://cran.r-project.org/web/packages/msm

p3state.msm  http://cran.r-project.org/web/packages/p3state.msm

survivalBIV http://cran.r-project.org/web/packages/survivalBIV

mstate http://cran.r-project.org/web/packages/mstate

etm http://cran.r-project.org/web/packages/etm

changeLOS http://cran.r-project.org/web/packages/changeLOS

mvna http://cran.r-project.org/web/packages/mvna

timereg http://cran.r-project.org/web/packages/timereg

Epi http://cran.r-project.org/web/packages/Epi/index.html

New JSS Special issue: Competing Risks and Multi-State Models
http://www.jstatsoft.org/v38

Available R based software to 
implement Multi-state models



Examples of Aplication
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Colon Cancer Data
Clinical trial on Duke’s stage III patients with 
929 incident cases of colon cancer. 
Recurrence is a time-dependent covariate 
which can be expressed as intermediate 
event and modeled as a multi-state model.
Covariates: rx, sex, age, etc.

468
54

38

414

423

Bladder Cancer Data
Available on the survival package of the R.
The states are based on the occurrence of
the first and second recurrence.



The p3state.msm Package
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Authors: Luis Meira-Machado
and Javier Roca-Pardiñas. 
Performs multi-state
regression
Provides statistical
methods for estimating
quantities of interest such
as transition probabilities.

p3state.msm 

Numerical 
output:

Regression coefficients (TDCM, 
CMM, CSMM), bivariate 

distribution function, transition 
probabilities 

Graphical 
output: 

Transition probabilities, bivariate 
distribution function, marginal 

distribution

Models: Progressive three-state and 
illness-death 
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Input data

times1 – sojourn time in state 1
delta – indicator of transition from state 1 to state 2
times2 – sojuourn time in state 2
time – times1+times2  
status – final indicator status
covariates

1. Disease-free 2. recurrence

3. Dead

times1 delta times2 time status rx sex age
968 1 553 1521 1 3 1 43

3087 0 0 3087 0 3 1 63
542 1 421 963 1 1 0 71
245 1 48 293 1 3 0 66



12

p3state.msm
R> res.p3state<-p3state(colon2, formula = ~ factor(rx) + sex + age)
R> summary(res.p3state, model = "TDCM")
R> summary(res.p3state, model = "CMM")
R> summary(res.p3state, model = "CSMM")

Cox Semi-Markov Model from state 1 -> 3

coef exp(coef) 95% CI p-value

factor(rx)2 -0.3353 0.7151 0.3132 – 1.6329 0.4261

factor(rx)3 -0.1670 0.8462 0.4011 – 1.7853 0.6611

sex 0.4238 1.5278 0.7922 – 2.9464 0.2059

age 0.0854 1.0892 1.0486 – 1.1313 1.0231e-05
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p3state.msm
R> summary(res.p3state, time1 = 100, time2 = 800)

The estimate of the transition probability P11( 100 , 800 ) is  0.6182574 
The estimate of the transition probability P12( 100 , 800 ) is  0.1553286 
The estimate of the transition probability P13( 100 , 800 ) is  0.226414 
The estimate of the transition probability P22( 100 , 800 ) is  0.05579566 
The estimate of the transition probability P23( 100 , 800 ) is  0.9442043

R> plot(res.p3state, plot.trans = "all", time1 = 100)
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p3state.msm

R> res.blad<-p3state(blad)
R> summary(res.blad, estimate = TRUE, time1 = 3, time2 = 12)

The estimate of the transition probability P11( 3 , 12 ) is  0.7543621 
The estimate of the transition probability P12( 3 , 12 ) is  0.1300108 
The estimate of the transition probability P13( 3 , 12 ) is  0.1156272 
The estimate of the transition probability P22( 3 , 12 ) is  0.7074841 
The estimate of the transition probability P23( 3 , 12 ) is  0.2925159 
The estimate of the bivariate distribution function F12( 3 , 12 ) is  0.09060991 
The estimate of the marginal distribution function of the second gap time, F2( 12 ) is  0.3250242
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p3state.msm
R> plot(res.blad, plot.marginal = TRUE, plot.bivariate = TRUE)
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Two more packages
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survivalBIV

Numerical 
output:

Bivariate distribution function 
using several methods; 

marginal distribution of the 
second gap time.

Graphical 
output: 

Bivariate distribution function, 
marginal distribution

Models: Progressive three-state 
model

Authors Ana Moreira, Artur Araujo and 
Luis Meira-Machado

Availability Now on CRAN

TPmsm

Numerical 
output:

Estimates for the transition 
probabilities with bootstrap 

confidence intervals.

Graphical 
output: 

Transition probabilities

Models: Progressive three-state 
model; illness-death model

Authors Artur Araujo, Luis Meira-
Machado and Javier Roca-

Pardiñas

Availability Soon on CRAN
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