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Overview

Multi-state models

Generalities.
Progressive three-state models: empirical estimators.
Regression models.

R based Software: p3state.msm

Application

Colon cancer data; Bladder cancer data.



Multi-state models

A multi-state model I1s a model for a stochastic process,

which at any time point occupies one of a set of discrete
states.

In biomedical applications, the states may be based:
Clinical symptoms

Biological markers

Some scale of the disease

A non-fatal complication in the course of the illness.



The mortality model

Multi-state models (MSMs) are very useful for
describing complicated event history data. These
models may be considered a generalization of survival
analysis where survival Is the ultimate outcome of
Interest but where Intermediate (transient) states are

= 1dentified.

1. Alive > 2. Dead

The mortality model (for survival analysis)



Progressive three-state model

The scope of multi-state models (Andersen et al., 1993) provides
a rich framework to handle complex situations involving more
than two states and a number of possible transitions among

them.

Alive and

disease-free

recurrence > Dead

The progressive three-state model for breast cancer data.

1. Healthy >

2. Diseased

I

T

3. Dead

Three transition intensities:

- Incidence of the illness;

- Two death intensities (with and
without the disease)



Notations

The multi-state process is fully characterized through:

Transition probabilities between states h and j,
P(X(t)=]j|[X(s)=h.& )
being & _ the observed history of the process up to time t that

is generated by {X (u),0<u<s}. Or through transition

intensities: o (t|g )= lim P (X (t+dt) =dJ'|X (t)=h.g )
g t



Assumptions and goals

Assumptions
Time-Homogeneity: the intensities are constant over time.

The Markov assumption: future evolution only depends on the
current state. That Is, the transition intensities are independent
of the history of the process.

The semi-Markov assumption: future evolution does not depend
on the current time, but only on the duration in the current state.

Goals

Estimation of transition probabilities; Estimation of the
bivariate distribution function.

Multi-state regression (e.g., using Cox (semi-)Markov models)



Avallable R based software to

Implement Multi-state models

survival http://cran.r-project.org/web/packages/survival

IMSM http://cran.r-project.org/web/packages/msm
p3state.msm nhttp://cran.r-project.org/web/packages/p3state.msm
survivalBIV http://cran.r-project.org/web/packages/survivalBIV

Mmstate nttp://cran.r-project.org/web/packages/mstate

elm http://cran.r-project.org/web/packages/etm
changeL OS nhttp://cran.r-project.org/web/packages/changel OS

IMVNa http://cran.r-project.org/web/packages/mvna

ti IMETEQ http://cran.r-project.org/web/packages/timereg

Epl http://cran.r-project.org/web/packages/Epi/index.html

New JSS Special issue: Competing Risks and Multi-State Models
http://www.jstatsoft.org/v38




Examples of Aplication
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468 Colon Cancer Data
) _linical trial on Duke’s stage Il patients with
LSRR IO 20 incident cases of colon cancer.
414

Recurrence is a time-dependent covariate
Bladder Cancer Data

which can be expressed as intermediate

event and modeled as a multi-state model.
Covariates: rx, sex, age, etc.

Available on the survival package of the R.

The states are based on the occurrence of

the first and second recurrence.
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The p3state.msm Package

p3state.msm
Authors: Luis Meira-Machado

Numerical Regression coefficients (TDCM,

output; CMM, CSMM), bivariate and Javier Roca-Pardinas.
distribution function, transition -
el "Performs multi-state
regression
Graphical Transition probabilities, bivariate - PrOVIdeS StiatIStl_Cal
output: distribution function, marginal methods for EStlmatlng
distribution quantities of interest such

as transition probabilities.

Models: Progressive three-state and
illness-death
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Input data

timesl delta times2 time status rx sex age
968 1 553 1521 1 3 1 43
3087 0 0 3087 0 3 1 63
542 1 421 963 1 1 0 71
245 1 48 293 1 3 0 66

timesl — sojourn time in state 1

delta — indicator of transition from state 1 to state 2
times2 — sojuourn time in state 2

time — timesl1+times2

status — final indicator status

covariates

1. Disease-free >

2. recurrence

I

3. Dead
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p3state.msm

R> res.p3state<-p3state(colon2, formula = ~ factor(rx) + sex + age)
R> summary(res.p3state, model = "TDCM")

R> summary(res.p3state, model = "CMM")

R> summary(res.p3state, model = "CSMM")

Cox Semi-Markov Model from state 1 -> 3

coef exp(coef) 959% CI p-value
factor(rx)2 -0.3353  0.7151 0.3132-1.6329 0.4261

1670 4011-17853  0.6611

sex 0.4238 1.5278 0.7922 —2.9464 0.2059

o
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Estimated prob. p11¢ 100 t)

p3state.msm

0% 06 07 08 08 10

R> summary(res.p3state, timel = 100, time2 = 800)

The estimate of the transition probability P11( 100, 800) is 0.6182574
The estimate of the transition probability P12( 100, 800 ) is 0.1553286
The estimate of the transition probability P13( 100, 800 ) is 0.226414
The estimate of the transition probability P22( 100, 800 ) is 0.05579566
The estimate of the transition probability P23( 100, 800 ) is 0.9442043

R> plot(res.p3state, plot.trans = "all", timel = 100)

Estimated prob p12( 100 1)
Estimated prob. p22( 100 5
Estimated prob. p23{ 100 t)
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p3state.msm

2. “Alive 2. “Fir 3.“8
_ an st €cong
Re(:urrenCe,, Recu”ence“

R> res.blad<-p3state(blad)
R> summary(res.blad, estimate = TRUE, timel = 3, time2 = 12)

The estimate of the transition probability P11( 3, 12 ) is 0.7543621

The estimate of the transition probability P12( 3,12 ) is 0.1300108

The estimate of the transition probability P13( 3,12 ) is 0.1156272

The estimate of the transition probability P22( 3,12 ) is 0.7074841

The estimate of the transition probability P23( 3,12 ) is 0.2925159

The estimate of the bivariate distribution function F12( 3, 12 ) is 0.09060991

The estimate of the marginal distribution function of the second gap time, F2( 12 ) is 0.3250242
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p3state.msm

R> plot(res.blad, plot.marginal = TRUE, plot.bivariate = TRUE)

Estimated marginal dist. F2(t)
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Two more packages

survivalBIV

Numerical
output:

Graphical
output:

Models:

Authors

Availability

Bivariate distribution function
using several methods;
marginal distribution of the
second gap time.

Bivariate distribution function,
marginal distribution

Progressive three-state
model

Ana Moreira, Artur Araujo and
Luis Meira-Machado

Now on CRAN

TPmMsm

Numerical
output:

Graphical
output:

Models:

Authors

Availability

Estimates for the transition
probabilities with bootstrap
confidence intervals.

Transition probabilities

Progressive three-state
model: illness-death model

Artur Araujo, Luis Meira-
Machado and Javier Roca-
Pardinas

Soon on CRAN
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