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Abstract
Marquardt [3] and McDonald [4] presented an expression for the Variance Inflation Factor (VIF) to be applied

in Ridge Regression (RR) that leads to values of VIF lesser than 1, contrarily to its theoretical concept. However,
these expressions have been widely applied and developed to be applied in R software. This work presents an al-
ternative expression that that satisfies the afore mentioned condition, and also presents other interesting properties.
The function R is also presented and applied in an empirical application.

Introduction

The ridge estimation was presented by Hoerl and Kennard [2] as a mechanical method to solve
collinearity. It defines a class of estimators which depend on the non-negative scalar parameter k:

—1

Bk) = (X'X + A1) X'Y. (1)

Its covariance matrix is:

var (B\(k)) —

2(X'X + kI) T XX (XX 4 KT) T 2)

e The estimator given in (1) is a biased estimator when £ > 0 and when £ = 0 it coincides with the
least square estimator.

e After selecting the value of the parameter £ we can apply the ridge estimation but then we will
need to know if the collinearity has been solved.

e Thus, it 1s necessary to extend the different collinearity diagnostic measures to be applied in Ridge
Regression (RR).

A widely applied measure to analyze the problem of collinearity is the Variance Inflator Factor
(VIF) which is defined in an standardized model where the exogenous variables are orthogonal to the
variable X; (then R? = () and then it 1s possible to obtain the generally accepted definition of VIF
due to [5]:

VIF; = (3)

2.

The VIFs presented by Marquardt [3] and McDonald [4] for the RR are incorrectly calculated in

the matrix (X'X + £I) “Ixrx (X'X + kI ~! eading to a wrong definition of VIF that have been
widely applied in scientific literature and in R software.

Origin of the incorrect expression

By taking the following standardized model:
= P1r1j + Ooxgj + v, J=1,...,n, 4)

where the following conditions are assumed: Z?:lﬂflj = 0, Z?’:l x%j = 1, Z?’:laﬁg]’ = 0,
Z?’:l :z:% ;=1 and 2?21 x1j29; = p, the variance inflator factor could be defined, when p = 2,

as the corresponding element of the main diagonal of the matrix (X’ X) ~! That s to say:

1
L—p

VIF =

25 (5)

By using this last definition of VIF in the ridge estimator with expression (1) and with the ma-
trix (X'X + kI —“IxIx (X'X + kI)_l, Marquardt [3] and McDonald [4] presented the following
expressions, respectively:

(1+E)2—2(1+k)p? + p?
(1+ k)% — p2}2

MOAL+FE) 2+ Mo+ k)™
VIFy (k) = MHALEE Z A (e ) T

where A\ = 1 + pand Ay = 1 — p are the latent roots of X'X.
Note that these authors considered the elements of the main diagonal of the matrix:

VIF (k) = : (6)

(7)

(X'X + KT) XX (X/X + k1)

as the variance inflation factors leading to the following consequences:

e Expression (6) can take values lower than 1 while expression (5) will be always equal to or greater
than 1 since —1 < p < 1.

e It is also evident that the VIF should increases as the correlation coefficient p increases. However,
the VIF (k) does not verify this condition. Note that the VIF (k) decreases for values of p higher
than 0.9 (when collinearity is serious), even taking values less than one.

Our contribution

Garcia ef al. [ 1] presented an alternative expression of the VIF obtained from the matrix X 4 calcu-
lated to obtain the ridge estimator by using Ordinary Least Squares (OLS) regression. Marquardt [ 3]
and, more explicitly, Zhang and Ibrahim [6] pointed out that the ridge estimator can be calculated by
OLS regression from the matrix X 4 as:

—1

Brlk) = (X'X + k) ' X'Y = (X/,X ) "X, Y4, k>0, (8)

X
where X 4 = ( \/EI> and Y 4 = (g) being 1 the identity matrix and O the null vector both of order

We now know the matrix X 4 that has generated the matrix (X’ X + kI) and we can calculate the
determination coefficient between the independent variables and the VIF from its general definition.
By developing the matrix X 4 with p = 2 we have:
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L12 222 / 211 221 \
f * 212 299
Xy = — : : : 9)

vk 0 \217;+2 2’27;,+2 /

from which we can estimate the model z1; = 51 + f229; + wy, with j = 1,...,n + 2 (without

standardized variables) where 2?212 215 = vk and Z?’LQ 29j = V'k, and obtain the coefficient of
determination. And the VIF for the ridge regression will be obtained as:

1 (n+2)(1+k) — k]

1—R? (n+22[(1+k)?>—p* —2(n+2k(1+k—p) (19)

VIFp(k,n) =

R function

VIF <— function(independientes , salto=0.1, tope=1, graf=F)

observaciones = dim(independientes )[1]
variables = dim(independientes )[2]

discretizacion = seq(0, tope, salto)
identidad = diag(variables)
ceros = matrix (0, variables , 1)

# Estandardizing

X = matrix( , observaciones, variables)

for (i in l:variables) {
media = mean(independientes[,1])
varianza = ((observaciones —1)/observaciones)xvar(independientes[,i])
for (j in l:observaciones) {

X[j,i1] = (independientes[j,i] — media)/sqrt(observaciones=*varianza)

}

}

XX = crossprod (X)
# Apply Theil definition to standardized data
theil2 = matrix(, length(discretizacion), variables+1)
determinante = array( , c(length(discretizacion),2))
j=1
for (k in discretizacion)
{
Ik = sqrt(k)xidentidad
Xa2 = rbind (X, Ik)
determinante[j,l] = k
determinante[j,2] = det(cor(Xa2))
theil2[j,1] =k
for (i1 in 1l:variables)
{
regd = Im(Xa2[,1] = Xa2[,—i1] — 1)
R24 = as.numeric(summary(reg4)[8])
theil2[j,i+1] = 1/(1—R24)
}
] = j+l1

}

# Output
filas = ¢()
for(k in discretizacion)
{
filas = ¢(””,filas)
¥
rownames (theil2) = filas
columnasl = c¢()
columnas2 = c¢(7k”)
columnas3 = c¢(7.7)
for (i in 1:variables)
{
columnasl = c(columnasl, paste(”X”,1))
columnas2 = c(columnas2, paste(”X”,1))
¥
colnames(theil2) = columnas2
rownames (XX) = columnasl
colnames (XX) = columnasl
resultado = list (XX, determinante , theil2)
names(resultado) = c¢(”Matriz._.de_correlaciones”, "Determinante._matriz.de_.correlaciones”, "VIF_.in_Ridge_Regression”)
resultado

In this example the total mortality rate, Y, 1s related to the nitrogen oxide pollution potential, X, and
the hydrocarbon pollution potential, X5, for 60 cities. From this information, we can obtain the value

of n = 60 and p = 0.984.

k| VIF(k,60) VIFy (k) VIF(k,60) — VIF,,(k)

0 | 31.5020 31.5020 0.0000
0.01 | 19.6732 12.0838 7.5894
0.02| 144167 6.4199 7.9968
0.03| 11.4461  4.0253 7.4208
0.04| 9.5369  2.7932 6.7437
0.05 82066  2.0763 6.1302
0.06| 7.2266  1.6225 5.6041
007 | 64748 13168 5.1580
0.08 58799  1.1009 4.7790
0.09 5.3975  0.9426 4.4548
0.1 | 4.9984  0.8229 4.1754
0.11| 4.6628  0.7301 3.9327
0.12| 43767  0.6566 3.7201
0.13| 4.1300  0.5973 3.5327
0.14| 39150  0.5486 3.3664
0.15| 3.7261  0.5082 3.2179
0.16 3.5587  0.4741 3.0846
0.17| 3.4094  0.4450 2.9644
0.18| 32755  0.4201 2.8554
0.19| 3.1547  0.3984 2.7563
02 | 3.0451 03794 2.6657
021| 29453  0.3627 2.5826
022 2.8541  0.3479 2.5062
023 27703  0.3346 2.4358
024 26932 03226 2.3706
025| 26219 03118 2.3101
026| 2.5559  0.3020 2.2539
027 | 24945  0.2931 2.2015
028| 24373  0.2848 2.1525
029| 23840  0.2773 2.1067
03 | 23340  0.2703 2.0638
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