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Abstract
Marquardt [3] and McDonald [4] presented an expression for the Variance Inflation Factor (VIF) to be applied

in Ridge Regression (RR) that leads to values of VIF lesser than 1, contrarily to its theoretical concept. However,
these expressions have been widely applied and developed to be applied in R software. This work presents an al-
ternative expression that that satisfies the afore mentioned condition, and also presents other interesting properties.
The function R is also presented and applied in an empirical application.

Introduction
The ridge estimation was presented by Hoerl and Kennard [2] as a mechanical method to solve
collinearity. It defines a class of estimators which depend on the non-negative scalar parameter k:

β̂(k) =
(
X′X + λI

)−1
X′Y. (1)

Its covariance matrix is:

var
(
β̂(k)

)
= σ2

(
X′X + kI

)−1
X′X

(
X′X + kI

)−1
. (2)

• The estimator given in (1) is a biased estimator when k > 0 and when k = 0 it coincides with the
least square estimator.
•After selecting the value of the parameter k we can apply the ridge estimation but then we will

need to know if the collinearity has been solved.
• Thus, it is necessary to extend the different collinearity diagnostic measures to be applied in Ridge

Regression (RR).
A widely applied measure to analyze the problem of collinearity is the Variance Inflator Factor

(VIF) which is defined in an standardized model where the exogenous variables are orthogonal to the
variable Xi (then R2

i = 0) and then it is possible to obtain the generally accepted definition of VIF
due to [5]:

VIFi =
1

1−R2
i

. (3)

The VIFs presented by Marquardt [3] and McDonald [4] for the RR are incorrectly calculated in
the matrix

(
X′X + kI

)−1
X′X

(
X′X + kI

)−1 leading to a wrong definition of VIF that have been
widely applied in scientific literature and in R software.

Origin of the incorrect expression
By taking the following standardized model:

yj = β1x1j + β2x2j + vj, j = 1, . . . , n, (4)

where the following conditions are assumed:
∑n
j=1 x1j = 0,

∑n
j=1 x

2
1j = 1,

∑n
j=1 x2j = 0,∑n

j=1 x
2
2j = 1, and

∑n
j=1 x1jx2j = ρ, the variance inflator factor could be defined, when p = 2,

as the corresponding element of the main diagonal of the matrix
(
X′X

)−1. That is to say:

VIF =
1

1− ρ2
. (5)

By using this last definition of VIF in the ridge estimator with expression (1) and with the ma-
trix

(
X′X + kI

)−1
X′X

(
X′X + kI

)−1, Marquardt [3] and McDonald [4] presented the following
expressions, respectively:

VIFM (k) =
(1 + k)2 − 2(1 + k)ρ2 + ρ2[

(1 + k)2 − ρ2
]2 , (6)

VIFMcD(k) =
λ1 (λ1 + k)−2 + λ2 (λ2 + k)−2

2
, (7)

where λ1 = 1 + ρ and λ2 = 1− ρ are the latent roots of X′X.
Note that these authors considered the elements of the main diagonal of the matrix:(

X′X + kI
)−1

X′X
(
X′X + kI

)−1
as the variance inflation factors leading to the following consequences:
• Expression (6) can take values lower than 1 while expression (5) will be always equal to or greater

than 1 since −1 ≤ ρ ≤ 1.
• It is also evident that the VIF should increases as the correlation coefficient ρ increases. However,

the VIFM (k) does not verify this condition. Note that the VIFM (k) decreases for values of ρ higher
than 0.9 (when collinearity is serious), even taking values less than one.

Our contribution
Garcı́a et al. [1] presented an alternative expression of the VIF obtained from the matrix XA calcu-
lated to obtain the ridge estimator by using Ordinary Least Squares (OLS) regression. Marquardt [3]
and, more explicitly, Zhang and Ibrahim [6] pointed out that the ridge estimator can be calculated by
OLS regression from the matrix XA as:

β̂R(k) =
(
X′X + kI

)−1
X′Y =

(
X′AXA

)−1
X′AYA, k ≥ 0, (8)

where XA =

(
X√
kI

)
and YA =

(
Y
0

)
being I the identity matrix and 0 the null vector both of order

p.
We now know the matrix XA that has generated the matrix

(
X′X + kI

)
and we can calculate the

determination coefficient between the independent variables and the VIF from its general definition.
By developing the matrix XA with p = 2 we have:

XA =



x11 x21
x12 x22

... ...
x1n x2n√
k 0

0
√
k


=


z11 z21
z12 z22
... ...

z1n+2 z2n+2

 , (9)

from which we can estimate the model z1j = β1 + β2z2j + wj, with j = 1, . . . , n + 2 (without
standardized variables) where

∑n+2
j=1 z1j =

√
k and

∑n+2
j=1 z2j =

√
k, and obtain the coefficient of

determination. And the VIF for the ridge regression will be obtained as:

VIFR(k, n) =
1

1−R2
i

=
[(n + 2)(1 + k)− k]2

(n + 2)2
[
(1 + k)2 − ρ2

]
− 2(n + 2)k(1 + k − ρ)

. (10)

R function
VIF <− f u n c t i o n ( i n d e p e n d i e n t e s , s a l t o = 0 . 1 , t o p e =1 , g r a f =F )

o b s e r v a c i o n e s = dim ( i n d e p e n d i e n t e s ) [ 1 ]
v a r i a b l e s = dim ( i n d e p e n d i e n t e s ) [ 2 ]

d i s c r e t i z a c i o n = seq ( 0 , tope , s a l t o )
i d e n t i d a d = diag ( v a r i a b l e s )
c e r o s = matrix ( 0 , v a r i a b l e s , 1 )

# E s t a n d a r d i z i n g
X = matrix ( , o b s e r v a c i o n e s , v a r i a b l e s )
f o r ( i i n 1 : v a r i a b l e s ) {

media = mean ( i n d e p e n d i e n t e s [ , i ] )
v a r i a n z a = ( ( o b s e r v a c i o n e s −1) / o b s e r v a c i o n e s ) ∗var ( i n d e p e n d i e n t e s [ , i ] )
f o r ( j i n 1 : o b s e r v a c i o n e s ) {

X[ j , i ] = ( i n d e p e n d i e n t e s [ j , i ] − media ) / s q r t ( o b s e r v a c i o n e s ∗ v a r i a n z a )
}

}

XX = crossprod (X)
# Apply T h e i l d e f i n i t i o n t o s t a n d a r d i z e d da ta
t h e i l 2 = matrix ( , l e n g t h ( d i s c r e t i z a c i o n ) , v a r i a b l e s +1)

d e t e r m i n a n t e = array ( , c ( l e n g t h ( d i s c r e t i z a c i o n ) , 2 ) )
j = 1
f o r ( k i n d i s c r e t i z a c i o n )
{

Ik = s q r t ( k ) ∗ i d e n t i d a d
Xa2 = rbind (X, Ik )
d e t e r m i n a n t e [ j , 1 ] = k
d e t e r m i n a n t e [ j , 2 ] = d e t ( cor ( Xa2 ) )
t h e i l 2 [ j , 1 ] = k
f o r ( i i n 1 : v a r i a b l e s )
{

r eg4 = lm ( Xa2 [ , i ] ˜ Xa2[ ,− i ] − 1)
R24 = as . numeric ( summary ( r eg4 ) [ 8 ] )
t h e i l 2 [ j , i +1] = 1 / (1−R24 )

}
j = j +1

}
# Outpu t

f i l a s = c ( )
f o r ( k i n d i s c r e t i z a c i o n )
{

f i l a s = c ( ” ” , f i l a s )
}
rownames ( t h e i l 2 ) = f i l a s
columnas1 = c ( )
columnas2 = c ( ” k ” )
columnas3 = c ( ” ” )
f o r ( i i n 1 : v a r i a b l e s )
{

columnas1 = c ( columnas1 , p a s t e ( ”X” , i ) )
columnas2 = c ( columnas2 , p a s t e ( ”X” , i ) )

}
colnames ( t h e i l 2 ) = columnas2
rownames (XX) = columnas1
colnames (XX) = columnas1
r e s u l t a d o = l i s t (XX, d e t e r m i n a n t e , t h e i l 2 )
names ( r e s u l t a d o ) = c ( ” M a t r i z de c o r r e l a c i o n e s ” , ” D e t e r m i n a n t e m a t r i z de c o r r e l a c i o n e s ” , ”VIF i n Ridge R e g r e s s i o n ” )
r e s u l t a d o

Example
In this example the total mortality rate, Y , is related to the nitrogen oxide pollution potential, X1, and
the hydrocarbon pollution potential, X2, for 60 cities. From this information, we can obtain the value
of n = 60 and ρ = 0.984.

k VIF(k, 60) VIFM(k) VIF(k, 60)− VIFM(k)

0 31.5020 31.5020 0.0000
0.01 19.6732 12.0838 7.5894
0.02 14.4167 6.4199 7.9968
0.03 11.4461 4.0253 7.4208
0.04 9.5369 2.7932 6.7437
0.05 8.2066 2.0763 6.1302
0.06 7.2266 1.6225 5.6041
0.07 6.4748 1.3168 5.1580
0.08 5.8799 1.1009 4.7790
0.09 5.3975 0.9426 4.4548
0.1 4.9984 0.8229 4.1754

0.11 4.6628 0.7301 3.9327
0.12 4.3767 0.6566 3.7201
0.13 4.1300 0.5973 3.5327
0.14 3.9150 0.5486 3.3664
0.15 3.7261 0.5082 3.2179
0.16 3.5587 0.4741 3.0846
0.17 3.4094 0.4450 2.9644
0.18 3.2755 0.4201 2.8554
0.19 3.1547 0.3984 2.7563
0.2 3.0451 0.3794 2.6657

0.21 2.9453 0.3627 2.5826
0.22 2.8541 0.3479 2.5062
0.23 2.7703 0.3346 2.4358
0.24 2.6932 0.3226 2.3706
0.25 2.6219 0.3118 2.3101
0.26 2.5559 0.3020 2.2539
0.27 2.4945 0.2931 2.2015
0.28 2.4373 0.2848 2.1525
0.29 2.3840 0.2773 2.1067
0.3 2.3340 0.2703 2.0638
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